Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36079670

RESUMO

Heading date (HD) is one of the agronomic traits that influence maturity, regional adaptability, and grain yield. The present study was a follow-up of a previous quantitative trait loci (QTL) mapping study conducted on three populations, which uncovered a total of 62 QTLs associated with 10 agronomic traits. Two of the QTLs for HD on chromosome 7 (qHD7a and qHD7b) had a common flanking marker (RM3670) that may be due to tight linkage, and/or weakness of the statistical method. The objectives of the present study were to map QTLs associated with HD in a set of 76 chromosome segment substitution lines (CSSLs), fine map and validate one of the QTLs (qHD7b) using 2997 BC5F2:3 plants, and identify candidate genes using sequencing and expression analysis. Using the CSSLs genotyped with 120 markers and evaluated under two short-day and two long-day growing conditions, we uncovered a total of fourteen QTLs (qHD2a, qHD4a, qHD4b, qHD5a, qHD6a, qHD6b, qHD7b, qHD7c, qHD8a, qHD10a, qHD10b, qHD11a, qHD12a, and qHD12b). However, only qHD6a and qHD7b were consistently detected in all four environments. The phenotypic variance explained by qHD6a and qHD7b varied from 10.1% to 36.1% (mean 23.1%) and from 8.1% to 32.8% (mean 20.5%), respectively. One of the CSSL lines (CSSL52), which harbored a segment from the early heading XieqingzaoB (XQZB) parent at the qHD7b locus, was then used to develop a BC5F2:3 population for fine mapping and validation. Using a backcross population evaluated for four seasons under different day lengths and temperatures, the qHD7b interval was delimited to a 912.7-kb region, which is located between RM5436 and RM5499. Sequencing and expression analysis revealed a total of 29 candidate genes, of which Ghd7 (Os07g0261200) is a well-known gene that affects heading date, plant height, and grain yield in rice. The ghd7 mutants generated through CRISPR/Cas9 gene editing exhibited early heading. Taken together, the results from both the previous and present study revealed a consistent QTL for heading date on chromosome 7, which coincided not only with the physical position of a known gene, but also with two major effect QTLs that controlled the stigma exertion rate and the number of spikelets in rice. The results provide contributions to the broader adaptability of marker-assisted breeding to develop high-yield rice varieties.

2.
Front Genet ; 12: 790789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899867

RESUMO

In angiosperms, anther development comprises of various complex and interrelated biological processes, critically needed for pollen viability. The transitory callose layer serves to separate the meiocytes. It helps in primexine formation, while the timely degradation of tapetal cells is essential for the timely callose wall dissolution and pollen wall formation by providing nutrients for pollen growth. In rice, many genes have been reported and functionally characterized that are involved in callose regulation and pollen wall patterning, including timely programmed cell death (PCD) of the tapetum, but the mechanism of pollen development largely remains ambiguous. We identified and functionally characterized a rice mutant dcet1, having a complete male-sterile phenotype caused by defects in anther callose wall, exine patterning, and tapetal PCD. DCET1 belongs to the RNA recognition motif (RRM)-containing family also called as the ribonucleoprotein (RNP) domain or RNA-binding domain (RBD) protein, having single-nucleotide polymorphism (SNP) substitution from G (threonine-192) to A (isoleucine-192) located at the fifth exon of LOC_Os08g02330, was responsible for the male sterile phenotype in mutant dcet1. Our cytological analysis suggested that DCET1 regulates callose biosynthesis and degradation, pollen exine formation by affecting exine wall patterning, including abnormal nexine, collapsed bacula, and irregular tectum, and timely PCD by delaying the tapetal cell degeneration. As a result, the microspore of dcet1 was swollen and abnormally bursted and even collapsed within the anther locule characterizing complete male sterility. GUS and qRT-PCR analysis indicated that DCET1 is specifically expressed in the anther till the developmental stage 9, consistent with the observed phenotype. The characterization of DCET1 in callose regulation, pollen wall patterning, and tapetal cell PCD strengthens our knowledge for knowing the regulatory pathways involved in rice male reproductive development and has future prospects in hybrid rice breeding.

3.
Theor Appl Genet ; 134(2): 453-471, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33089345

RESUMO

Key message Rice male fertility gene Baymax1, isolated through map-based cloning, encodes a MYB transcription factor and is essential for rice tapetum and microspore development.Abstract The mining and characterization of male fertility gene will provide theoretical and material basis for future rice production. In Arabidopsis, the development of male organ (namely anther), usually involves the coordination between MYB (v-myb avian myeloblastosis viral oncogene homolog) and bHLH (basic helix-loop-helix) members. However, the role of MYB proteins in rice anther development remains poorly understood. In this study, we isolated and characterized a male sterile mutant (with normal vegetative growth) of Baymax1 (BM1), which encodes a MYB protein. The bm1 mutant exhibited slightly lagging meiosis, aborted transition of the tapetum to a secretory type, premature tapetal degeneration, and abnormal pollen exine formation, leading to ultimately lacks of visible pollens in the mature white anthers. Map-based cloning, complementation and targeted mutagenesis using CRISPR/Cas9 technology demonstrated that the mutated LOC_Os04g39470 is the causal gene in bm1. BM1 is preferentially expressed in rice anthers from stage 5 to stage 10. Phylogenetic analysis indicated that rice BM1 and its homologs in millet, maize, rape, cabbage, and pigeonpea are evolutionarily conserved. BM1 can physically interacts with bHLH protein TIP2, EAT1, and PHD (plant homeodomain)-finger member TIP3, respectively. Moreover, BM1 affects the expression of several known genes related to tapetum and microspore development. Collectively, our results suggest that BM1 is one of key regulators for rice male fertility and may serve as a potential target for rice male-sterile line breeding and hybrid seed production.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Fenótipo , Infertilidade das Plantas , Proteínas de Plantas/metabolismo , Pólen/química , Proteínas Proto-Oncogênicas c-myb/metabolismo , Mutação , Oryza/genética , Filogenia , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Proteínas Proto-Oncogênicas c-myb/genética
4.
Int J Mol Sci ; 20(17)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466256

RESUMO

One of the most chronic constraints to crop production is the grain yield reduction near the crop harvest stage by lodging worldwide. This is more prevalent in cereal crops, particularly in wheat and rice. Major factors associated with lodging involve morphological and anatomical traits along with the chemical composition of the stem. These traits have built up the remarkable relationship in wheat and rice genotypes either prone to lodging or displaying lodging resistance. In this review, we have made a comparison of our conceptual perceptions with foregoing published reports and proposed the fundamental controlling techniques that could be practiced to control the devastating effects of lodging stress. The management of lodging stress is, however, reliant on chemical, agronomical, and genetic factors that are reducing the risk of lodging threat in wheat and rice. But, still, there are many questions remain to be answered to elucidate the complex lodging phenomenon, so agronomists, breeders, physiologists, and molecular biologists require further investigation to address this challenging problem.


Assuntos
Oryza/genética , Melhoramento Vegetal/métodos , Estresse Fisiológico , Triticum/genética , Oryza/fisiologia , Característica Quantitativa Herdável , Triticum/fisiologia
5.
Rice (N Y) ; 12(1): 31, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073866

RESUMO

Seed setting rate is one of the major components that determine rice (Oryza sativa L.) yield. Successful fertilization is necessary for normal seed setting. However, little is known about the molecular mechanisms governing this process. In this study, we report a novel rice gene, LOW SEED SETTING RATE1 (LSSR1), which regulates the seed setting rate by facilitating rice fertilization. LSSR1 encodes a putative GH5 cellulase, which is highly conserved in plants. LSSR1 is predominantly expressed in anthers during the microsporogenesis stage, and its encoded protein contains a signal peptide at the N-terminal, which may be a secretory protein that stores in pollen grains and functions during rice fertilization. To explore the physiological function of LSSR1 in rice, loss-of-function mutants of LSSR1 were created through the CRISPR-Cas9 system, which showed a significant decrease in rice seed setting rate. However, the morphology of the vegetative and reproductive organs appears normal in lssr1 mutant lines. In addition, lssr1 pollen grains could be normally stained by I2-KI solution. Cytological results demonstrate that the blockage of fertilization mostly accounted for the low seed setting rate in lssr1 mutant lines, which was most likely caused by abnormal pollen grain germination, failed pollen tube penetration, and retarded pollen tube elongation. Together, our results suggest that LSSR1 plays an important role in rice fertilization, which in turn is vital for maintaining rice seed setting rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...